
Converting Pascal To HTML
by Marco Cantú

While I was writing my latest
book, Mastering Delphi 3, I

thought it would be a nice idea to
convert the source code files to
HTML format, to let readers
browse through them. Having 300
code examples on the CD-ROM
makes it a little difficult to find what
you are looking for! For this
purpose I built a number of tools
(using Delphi, of course):
➣ A Pascal to HTML converter,

called PasToWeb, capable of
reproducing the standard col-
our syntax highlighting of the
Delphi editor. This is basically a
parser which can analyse the
source code and recognise
keywords and comments.

➣ A tool to convert an entire
project to HTML. This is basi-
cally a Wizard which can run the
converter on any of the source
files making up a project, con-
verting it into HTML and adding
a simple index of the files at the
beginning of the HTML listing
(in fact I decided to have only
one HTML file per project).

➣ A tool to build a complete cross
reference of all the identifiers
(properties, methods, func-
tions, procedures, objects, vari-
ables, fields, constants...)
appearing in any of the source
code files. This tool is another
parser, which identifies all the
elements of the source code
which are not included in
strings or comments.

In this article I’ll focus only on the
first two of these tools. [I’m trying
to twist Marco’s arm to write a sec-
ond article on the cross referencing
tool! Editor]

Building A Parser
The first thought I had was that, of
course, I have to build a parser.
After thinking about it, I decided I
was too lazy to start from scratch.
I knew about the undocumented
TParser class inside the VCL, so I
started exploring it. Unfortunately
I found that this class is a little

inadequate, but you can easily add
capabilities to it. This is the ap-
proach I used. After a first rough
version I decided to inherit a class
from TParser, making the parser
more powerful and flexible, and
adding to it a virtual interface. The
next step was to inherit from my
class the code to handle the HTML
generation, using the virtual inter-
face. But let me go step by step.

The TParser Class
The starting point is the undocu-
mented TParser class, defined in
the Classes unit. I’ve found many
simple examples demonstrating its
usage, but it took me a while to
realise how it actually works. In
fact its name is totally misleading.
TParser can be better described as
a lexical tokeniser. It can divide a
source file into its basic elements:
symbols (or language identifiers,
including keywords), strings,
integers, floating point numbers,
other characters and the end of file
character.

The type of the token is indicated
by the Token property of the class,
which can assume one of the five
values shown in Listing 1, or the
value of an actual character (one
of the language symbols and
punctuation marks).

Besides the Token property,
TParser has a Create constructor
accepting the source stream as a
parameter, a NextToken function
you can use to move to the next
token in the source file, a function

and a property returning the actual
position in the file (SourcePos and
SourceLine) and some conversion
functions including TokenFloat,
TokenInt and TokenString.

The basic approach in using this
class is to write a while loop scan-
ning the source code file and to
provide a case statement within the
while loop to analyse the various
items. You can see the structure of
this code in Listing 2.

As you can see, there are a few
big problems. First, comments are
not recognised by this class. Sec-
ond, TParser skips all the “white
space” characters (spaces, tabs,
new line characters and so on).
Third, Pascal strings might also in-
clude special characters (such as
#13) so TParser merges the special
characters inside strings. We need
to extract them again.

In the end we are probably doing
more work subclassing the TParser
class than creating a parser from
scratch, but this is very interesting
anyway and it is what I have
actually done.

Extending TParser
My first step has been the defini-
tion of an abstract TCodeParser
class, which has absolutely no
knowledge of HTML. This class has

Parse := TParser.Create(SourceStream);
while Parse.Token <> toEOF do begin
 case Parse.Token of
 // main tokens
 toSymbol: ... // identifier or keyword (or comment)
 toString: ... // string (including special characters)
 toInteger: .. // numeric constant
 toFloat: ... // floating point constant
 // other tokens
 ’{’:
 ’}’:
 ’/’:
 ...
 end; // case
 // move to the next token
 Parse.NextToken;
end; // while

➤ Listing 2

toEOF = Char(0);
toSymbol = Char(1);
toString = Char(2);
toInteger = Char(3);
toFloat = Char(4);

➤ Listing 1

8 The Delphi Magazine Issue 23

a special constructor, the main
Convert procedure, a few local data
fields used in different methods,
plus a list of virtual methods. The
class definition is in Listing 3.

You might be wondering why I’ve
added all those virtual abstract
methods and a few other virtual
methods. The idea is simple: I want
this to be a generic extension of the
TParser class which I can extend to
produce HTML files, RTF files, or
files in any other format I’m inter-
ested in. I want to write a single
engine (the Convert method) and
let it call the virtual methods which
can be implemented by subclasses.
Here is an excerpt of the code used
when a keyword is found:

BeforeKeyword;
AppendStr(OutStr, TokenString);
AfterKeyword;

The first and last line call two vir-
tual methods, which can be defined
to add to the output string (OutStr)
specific elements, such as the
HTML and commands to
start and terminate bold type.
Listing 4 shows the code of the two
methods for the THtmlParser
subclass.

The core of this class is the
Convert method, which has the
structure indicated in Listing 2.
The code of this method is actually
quite long (about 150 lines) so you
won’t find a complete listing here,
but only some noteworthy ex-
cerpts. All the code is on the com-
panion disk of course. The entire
conversion code works on an out-
put string (OutStr). At the end this
string is added to the output
stream (Dest) by simply copying its
actual data:

Dest.WriteBuffer(
 Pointer(OutStr)^,
 Length(OutStr));

Code Formatting
To handle code formatting prop-
erly I’ve added variables to store
the current line and current posi-
tion of the output file, called Line
and Pos. Simply comparing these
two values with the information of
the input file (SourceLine and
SourcePos) you can find out if you

need to add extra white spaces or
new lines. For example this code
adds white spaces to the output
string, to match the position in the
input file:

while SourcePos > Pos do begin
 AppendStr(OutStr, ’ ’);
 Inc(Pos);
end;

Keywords Are Simple
Detecting keywords is actually one
of the simplest things you can do. I
prepared two string lists with all
the Pascal keywords and the two
keywords used by DFM files, object
and end. When the program finds a
symbol, it checks if the symbol is
one of the keywords of the list, as
shown in Listing 5.

Strings Are Complex
Handling keywords was simple, but
I found handling strings to be a

total nightmare! The problem is
that the TParser class elaborates
strings, doing operations you have
to undo to make the code work
properly. This is the reason you
might want to get rid of this base
class and write the entire code
from scratch.

Basically a string can also be a
single character, even one of those
constant characters below ascii 32
which are generally added to a
source code file using the # symbol,
such as #13 for a new line. These
special characters can also be the
first or last character of a string, or
other intermediate characters, and
we must recognise them. For multi-
character strings this operation is
performed by the MakeStringLegal
virtual function. Listing 6 shows
the main code.

The details are quite complex, so
I’m skipping them. Simply keep in
mind that there is an extra check

type
 TCodeParser = class(TParser)
 public
 constructor Create(SSource, SDest: TStream);
 procedure SetKeywordType(Kt: KeywordType);
 // conversion
 procedure Convert;
 protected
 // virtual methods(mostly virtual abstract)
 procedure BeforeString; virtual; abstract;
 procedure AfterString; virtual; abstract;
 procedure BeforeKeyword; virtual; abstract;
 procedure AfterKeyword; virtual; abstract;
 procedure BeforeComment; virtual; abstract;
 procedure AfterComment; virtual; abstract;
 procedure InitFile; virtual; abstract;
 procedure EndFile; virtual; abstract;
 function CheckSpecialToken(Ch1: char): string; virtual;
 function MakeStringLegal(S: String): string; virtual;
 protected
 Source, Dest: TStream;
 OutStr: string;
 FKeywords: TStrings;
 Line, Pos: Integer;
 end;

➤ Listing 3

toSymbol:
 if (FKeywords.IndexOf(TokenString) < 0) then
 // add the plain token
 AppendStr(OutStr, TokenString)
 else
 // add the keyword (see code above...)

➤ Listing 5

procedure THtmlParser.BeforeKeyword;
begin
 AppendStr(OutStr, ’’);
end;
procedure THtmlParser.AfterKeyword;
begin
 AppendStr(OutStr, ’’);
end;

➤ Listing 4

10 The Delphi Magazine Issue 23

required. Every character inside a
string (and also outside of a string)
must be checked for special cases.
For example, you cannot use the <
and > characters inside an HTML
file. You must convert them to the
corresponding HTML codes, as
you can see in Listing 7.

Comments Don’t Work
Handling comments is even more
complex, because the TParser class
ignores them. The program must
identify comments of different
kinds and must examine multiple
tokens (actually multiple charac-
ters) to understand if a first slash
or an open parenthesis is marking
the beginning of a comment or not.
When the program finds a slash
character, it should basically wait
until the next token, to determine
whether to add the plain character
to the output or call the BeforeCom-
ment virtual method before doing
this.

The solution I used in a first ver-
sion of this program was actually
quite simple. When a slash was
found the program produced no
output and set the LastSlash vari-
able to True. After the next token
was read, if the new token was not
another slash, the program simply
produced the plain output:

if LastSlash and
 (Token <> ’/’) then begin
 AppendStr(OutStr, ’/’);
 LastSlash := False;
end;

otherwise it added both slashes,
but only after the marking the be-
ginning of a comment and turning
the LineComm flag to True:

if LastSlash then begin
 LineComm := True;
 BeforeComment; // virtual
 AppendStr(OutStr, ’//’);
end

Since the parser doesn’t recognise
strings, I had to do an extra check
to see if a keyword was part of a
comment and if a string was part of
a comment. This is easy. The prob-
lem is that a comment can also con-
tain an invalid string, that is a single
quote, as in don’t. This is not legal

in a Delphi string (you have to write
it don’’t) and the parser believes
there is a string which doesn’t
terminate before the newline char-
acter. This generates a runtime er-
ror. How do you fix this? Either you
remove all single quotes from com-
ments (which is what I did for the
book in just a few minutes) or you
modify the code of the TParser
class of the VCL.

Changing TParser
As a last resort, I decided to edit
the TParser code to make it handle
comments directly. This way a
comment becomes a single token,
as a string, indicated by a new
constant:

const
 toComment = Char(5);

I copied the TParser source to the
NewParse unit and renamed the
class to TNewParser. Besides the
class name the definition of the

new class is exactly the same, as
are most of its methods. The differ-
ences are in the function NextToken,
which extracts tokens from the
source code. You can see the initial
portion of this function in Listing 8.
In the code P is the pointer to the
current character, while FSour-
cePtr indicates the beginning of the
current token.

To fix the code we can simply
add a new branch to the case state-
ment to handle multiline com-
ments. The program keeps
scanning the code until it finds a
closing brace, as you can see in
Listing 9. For single line comments,
though, we must use a different ap-
proach: we must add the code to
the else branch of the case state-
ment, check that we are not at the
end of the file, and then look to the
following character, (P+1)^.

You might want to edit the code
further to also handle (* ... *)
comments (not in the current ver-
sion). I was now able to go back to

function TNewParser.NextToken: Char;
var
 I: Integer;
 P, S: PChar;
begin
 SkipBlanks;
 P := FSourcePtr;
 FTokenPtr := P;
 case P^ of
 ’A’..’Z’, ’a’..’z’, ’_’:
 begin
 Inc(P);
 while P^ in [’A’..’Z’, ’a’..’z’, ’0’..’9’, ’_’] do
 Inc(P);
 Result := toSymbol;
 end;
 ...

➤ Listing 8

BeforeString;
if (Length(TokenString) = 1) and
 (Ord(TokenString [1]) < 32) then
 AppendStr(OutStr, ’#’ +
 IntToStr(Ord(TokenString [1])))
else
 AppendStr(OutStr, MakeStringLegal(TokenString));
AfterString;

➤ Listing 6

function THtmlParser.CheckSpecialToken(Ch1: char): string;
begin
 case Ch1 of
 ’<’: Result := ’<’;
 ’>’: Result := ’>’;
 ’&’: Result := ’&’;
 ’"’: Result := ’"’;
 else
 Result := Ch1;
 end;
end;

➤ Listing 7

12 The Delphi Magazine Issue 23

the original code of the Convert
method and simplify it a little, since
I don’t need to handle comments
there any more.

THtmlParser Class
From the basic class I’ve inherited
the THtmlParser class, with the spe-
cific HTML conversion code. We
have already seen some of the
methods of this class, and you can
see its definition in Listing 10.

The two class functions simply
generate the initial and final por-
tions of the HTML file, with the title
and a default background colour at
the beginning and a copyright at
the end. What is more interesting is
the AddFileHeader method, which
adds to the HTML file a header with
the name of the specific file and
defines a bookmark inside the
HTML file. This is the trick for the
version of the program which al-
lows you to have multiple source
code files within a single HTML file
and provides local jumps (as we’ll
see in a while). The core of this
method is a Format statement with
the NAME directive which defines
the bookmark inside an HTML
anchor:

Format(
 ’<H3>%s</H3>’
 + #13#10 + #13#10,
 [FName, FName]));

The User Interface
All the code we have seen up to
now relates to the core of the pro-
gram, in the Convert unit. This unit
is then included in a program with
a very simple user interface. The
main form (see Figure 1) allows a
user to operate in three steps.

The first step is the selection of
a Pascal or DFM file, though an
OpenDialog component. Once the
file is selected the program sug-
gests the name for a corresponding
output file, for example PasToWeb-
Form_pas.HTM in Figure 1. The user
can modify the suggested name.
The second step is the actual file
conversion. To accomplish this the
program must prepare the proper
streams, create an instance of the
THtmlParser class, initialise the ob-
ject and call its Convert method.
Key portions of this method are

procedure TForm1.BtnHTMLClick(Sender: TObject);
var
 Source, BinSource, Dest: TStream;
 Parser: THtmlParser;
begin
 // create the two streams
 Dest := TFileStream.Create(EditDest.Text, fmCreate or fmOpenWrite);
 if ExtractFileExt(EditSource.Text) = ’.dfm’ then begin
 // convert the DFM file to text
 BinSource := TFileStream.Create(EditSource.Text, fmOpenRead);
 Source := TMemoryStream.Create;
 ObjectResourceToText(BinSource, Source);
 Source.Position := 0;
 end else begin
 Source := TFileStream.Create(EditSource.Text, fmOpenRead);
 BinSource := nil;
 end;
 // parse the source code
 Parser := THtmlParser.Create(Source, Dest);
 Parser.Alone := True;
 Parser.Filename := EditSource.Text;
 Parser.Copyright := EditCopyr.Text;
 if ExtractFileExt(EditSource.Text) = ’.dfm’ then
 Parser.SetKeywordType(ktDfm);
 Parser.Convert;
 // free the objects
 ...

➤ Listing 11

 ’{’:
 begin
 // look for closing brace
 while P^ <> ’}’ do
 Inc(P);
 // move to the next
 Inc(P);
 Result := toComment;
 end;
else
 if (P^ = ’/’) and (P^ <> toEOF) and ((P+1)^ = ’/’) then begin
 // single line comment
 while P^ <> #13 do
 Inc(P);
 Result := toComment;
 end else
 // original code of the else branch

➤ Listing 9

type
 THtmlParser = class(TCodeParser)
 public
 FileName: string;
 Copyright: string;
 Alone: Boolean;
 procedure AddFileHeader(FileName: string);
 class function HtmlHead(Filename: string): string;
 class function HtmlTail(Copyright: string): string;
 protected
 procedure BeforeString; override;
 procedure AfterString; override;
 procedure BeforeKeyword; override;
 procedure AfterKeyword; override;
 procedure BeforeComment; override;
 procedure AfterComment; override;
 procedure InitFile; override;
 procedure EndFile; override;
 function CheckSpecialToken(Ch1: char): string; override;
 end;

➤ Listing 10

➤ Figure 1

14 The Delphi Magazine Issue 23

shown in Listing 11. Notice the
code used to convert the binary
DFM file into the textual descrip-
tion by calling the ObjectResource-
ToText procedure and the following
statement used to reset the stream.

The third step is to press the last
button to load the newly generated
HTML file in the default browser.
The program accomplishes this
simply by calling the ShellExecute
API function, passing the filename
and the Open command:

ShellExecute(Handle, ’open’,
 PChar(EditDest.Text), ’’,
 ’’, sw_ShowNormal);

You can see the effect of pressing
this third button (and an example
of the source code of the
PasToWeb program converted to
HTML) in Figure 2.

The Wizard
Having written the main program,
which turns a single source code

file into its HTML equivalent, I can
now show you how to incorporate
the conversion code into a Wizard.
This needs to be able to convert an
entire project. A Delphi Wizard, in
fact, can access information such
as the structure of a project using
the ToolServices class. I’m not go-
ing to explain how to write a wizard
in Delphi [check articles in Issues 3,
7, 9, 13, 16, 17 and 21 for details.
Editor], I’ll just describe the
specific features of this one.

The GetState method of this
wizard returns the enabled style or
nothing, depending on whether a
project is currently open in the
Delphi environment (as returned
by the GetProjectName method of
the ToolServices global object).
You can see the source code of this
method in Listing 12.

The same listing includes also
the code of the Execute method of
the wizard, which simply asks for
the copyright string, executes the
CurrProjectToHTML function and

then suggests opening the file in
the current HTML browser.

At the heart of this wizard is the
CurrProjectToHTML function, defin-
ed in the Convert unit. The function
generates an HTML file using the
project name and replacing its ex-
tension with the string _DPR.HTM
(this file name is also returned by
the function). After a generic HTML
header, the function generates a
list of the units and forms of the
project. Each of the items in this
list is actually a link to the name of
the file, which is an internal name
generated along with the file itself.
As a result, the HTML file of the
project shows the list of the inter-
nal files (with the exclusion of a
couple of special files) used as an
index. You can see the effect in
Figure 3.

The code of the CurrPro-
jectToHTML function is quite long,
so I’ve included in Listing 13 only
two small excerpts: the code used
to generate the list of units and the
code used to generate the portions
of the HTML file for each unit.

The PrjToWeb wizard is the only
element of the PrjWebW package,
available on the companion disk-
ette, along with the entire source
code of the examples discussed in
this article.

Conclusion
As I mentioned, at the end of this
project I was really not sure if using
the existing TParser class has really
been a good choice. Certainly I’ve
had a chance to explore it and
realise its strengths and many

function TPrjToWebWizard.GetState: TExpertState;
begin
 if ToolServices.GetProjectName <> ’’ then
 Result := [esEnabled]
 else
 Result := [];
end;
procedure TPrjToWebWizard.Execute;
var Copyr, ResFile: string;
begin
 Copyr := ’Source code copyright ...’;
 if InputQuery(’PrjToWeb Wizard’, ’Enter Copyright notice:’, Copyr) then begin
 ResFile := CurrProjectToHTML(Copyr);
 if MessageDlg(’HTML file generated.’#13 +
 ’Do you want to open it in your browser?’, mtConfirmation,
 [mbYes, mbNo], 0) = idYes then
 ShellExecute(ToolServices.GetParentHandle, ’open’, PChar(ResFile),
 ’’, ’’, sw_ShowNormal);
 end;
end;

➤ Listing 12

➤ Figure 3➤ Figure 2

July 1997 The Delphi Magazine 15

...
// list of units...
for I := 0 to ToolServices.GetUnitCount - 1 do begin
 Ext := Uppercase(ExtractFileExt(ToolServices.GetUnitName(I)));
 FName := Uppercase(ExtractFilename(ToolServices.GetUnitName(I)));
 if (Ext <> ’.RES’) and (Ext <> ’.DOF’) then
 AppendStr (HTML, ’ ’ + FName + ’’#13#10);
end;
...
// generate the HTML code for the units
for I := 0 to ToolServices.GetUnitCount - 1 do begin
 Ext := Uppercase(ExtractFileExt(ToolServices.GetUnitName(I)));
 if (Ext <> ’.RES’) and (Ext <> ’.DOF’) then begin
 Source := TFileStream.Create(ToolServices.GetUnitName(I), fmOpenRead);
 Parser := THtmlParser.Create(Source, Dest);
 try
 Parser.Alone := False;
 Parser.Filename := ToolServices.GetUnitName(I);
 Parser.Convert;
 finally
 Parser.Free;
 Source.Free;
 end;
 end; // if
end; // for
...

➤ Listing 13

weaknesses for parsing Pascal
files. But I’ve had to change its
original source code, extend it and
modify it so much that probably
starting with its code and editing it
directly would have been a better
choice.

After thinking a while about it,
I’ve realised that the TParser class

works great for the DFM files
(which have no comments, for
example). This is actually how it is
used inside the Delphi environ-
ment. After searching through the
VCL source code files, I found that
the TParser class is used only in the
ObjectTextToBinary procedure, and
also in an HTTP related procedure

in the client/server version of
Delphi 3.

However, I’ve achieved my two
objectives: firstly, to add HTML
versions of the source code for all
the projects in my book, spending
only an evening to write the con-
version program, and secondly, to
write an article teaching you how
to use the undocumented TParser
class!

Marco Cantú is the author of
Mastering Delphi 3 and Delphi
Developer’s Handbook. Besides
writing books he teaches adva-
nced Delphi seminars and speaks
at conferences worldwide. He is
based in Italy and can be reached
as marcocantu@compuserve.com
or though his Web site at:
 http://www.marcocantu.com

16 The Delphi Magazine Issue 23

	Building A Parser
	The TParser Class
	Extending TParser
	Code Formatting
	Keywords Are Simple
	Strings Are Complex
	Comments Don’t Work
	Changing TParser
	THtmlParser Class
	The User Interface
	The Wizard
	Conclusion

